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An Iterative Method for Elliptic Problems 
on Regions Partitioned into Substructures* 

By J. H. Bramble, J. E. Pasciak and A. H. Schatz 

Abstract. Some new preconditioners for discretizations of elliptic boundary problems are 
studied. With these preconditioners, the domain under consideration is broken into subdo- 
mains and preconditioners are defined which only require the solution of matrix problems on 
the subdomains. Analytic estimates are given which guarantee that under appropriate hy- 
potheses, the preconditioned iterative procedure converges to the solution of the discrete 
equations with a rate per iteration that is independent of the number of unknowns. Numerical 
examples are presented which illustrate the theoretically predicted iterative convergence rates. 

1. Introduction. In this paper we will consider as a model problem the Dirichlet 
problem for a second-order uniformly elliptic equation in two dimensions. Let Q be 
a bounded domain in R2, with boundary a2, which, for the sake of exposition, is the 
union of two regions Q1 and 02 and a common boundary F. Examples of such 
splittings are given in Figure 1. 

Thus we shall consider the problem 

Lu==f inQ, 

(1) u=O onaQ, 
where 

2 
a_ av\ 

Lv=- E aij 

with aij symmetric, uniformly positive definite, bounded and piecewise smooth on 
U. The generalized Dirichlet form is given by 

2 av ao Z, faE I ija]x ax1 dx 
i1j=~1 i 

defined for all v and k in the Sobolev space H1(Q) (the space of distributions with 
square-integrable first derivatives). The L2(Q) inner product is denoted by 

(v,+) = f vAdx. 

The subspace Ho(Q) of H1(Q) is the completion of the smooth functions with 
support in Q with respect to the norm in H'(Q). By integration by parts, the 
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FIGURE 1 

problem defined by (1) may be written in weak form: Find u E H'(Q), such that 

(2) A(u, )= (f ) 

for all p E Ho(S). This leads immediately to the standard Galerkin approximation. 
Let So be a finite-dimensional subspace of Ho (Q). The Galerkin approximation is 
defined as the solution of the following problem: Find U E SO such that 

(3) A(U, X) = (AX) 

for all x E S'. Once a basis (X1) - for S2 is chosen, (3) leads to a system of linear 
algebraic equations. Write 

N 

U -EaiXi; 
i=1 

then (3) becomes 
N 

(4) L aiA(Xi, Xj) = (I X j) 
i=1 

j = 1,..., N, which is a linear system for the determination of the coefficients ai, 
i=1,...,N. 

It is well known that for a wide class of approximation spaces, S', U will be a 
good approximation to u. We shall consider certain spaces Sh for which we may also 
develop efficient algorithms for the solution of the underlying linear system (4). 

The underlying method which we will consider is a preconditioned iterative 
method. The choice of particular iterative method within a certain class is not 
essential, but for the purpose of this paper we may think of the well-known 
conjugate gradient method which is often used in practice (cf. [1], [6], [9], [10]). 

Let A be the N X N matrix with entries A(Xi, Xj), a = (al, aN) and F the 

vector with components (f, Xj). Then (4) may be written 

(5) Aa = F. 

Generally, the matrix A is not well-conditioned so that a direct application of the 
conjugate gradient method to the symmetric positive definite system (5) will not be a 
very efficient algorithm. A preconditioned conjugate gradient method can be derived 
as follows. Let B be a positive definite symmetric matrix and write 

(6) B-'Aa = B-1F. 
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In the context of this paper the matrix B will be associated with another bilinear 
form B(, *) defined on So X So. The system (6) is symmetric with respect to the 
inner product defined by 

N 

(7) [ax,:- E Bij~iafij 
i,j=l 

Thus the conjugate gradient method may be applied to (6) with respect to (7). The 
importance of making a "good" choice for B is well known. The matrix B should 
have two main properties. First, the solution of the problem 

(8) Bf = b 

should be easy to obtain. This is tantamount to applying the operator B-' to the 
vector b. Secondly, B should be spectrally close to A in the sense that the condition 
number K of B-1A should not be large. Clearly K < X1/X0, where X0 and XI are 
constants such that 

Xo[J, /] -< [B-A1A, 1] < X18, /1 

In terms of the form B(-, -) the first property means that the solution W of 

B(W,X) = (g,X), VX E Ss 

for a given function g should be easier to obtain than the solution of (3). The 
spectral condition, in terms of the forms, is 

XOB(V, V) < A(V, V) < X1B(V, V) 

for all V E So. 
These two properties will guarantee, firstly, that the amount of work per step in 

applying the conjugate gradient method (as an iterative method) will be small, and, 
secondly, that the number of steps to reduce the error to a given size will be also 
small so that an efficient algorithm will result. 

In this paper we will describe and analyze a technique for constructing the bilinear 
form B(., ) (and hence the preconditioner B-1) which only involves solving related 
Galerkin (or matrix) equations on the subregions Q1 and Q2. For other works 
dealing with the solution of boundary value problems via substructuring cf. [4], [5], 
[7], [13], [14]. 

2. The Preconditioning Algorithm. In order to present the ideas clearly, we shall 
specifically consider the case in which the endpoints of F lie on ai. This is 
exemplified by case (a) in Figure 1. The approximation subspace So of Ho(Q) is 
defined by first triangulating Q, for example as in Figure 2. Then So is defined to be 
the collection of functions which are piecewise linear on the triangles, continuous on 
2 and vanish on aU. Notice that F is a "mesh line". 

In order to construct our form B(-, ), we shall need to define two finite element 
spaces, related to So. Let Sh(0l) be the restrictions to i1 of elements in So and let 
S,?(Q22) consist of those elements of So which vanish in Q1 and in particular on F. 
We shall also need some related bilinear forms defined on Ho(Q) x Ho(Q). 
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Domain of case (a) with triangulation 

FIGuRE 2 

Let 

(9) Ak(Vx)- 2 a-kj * Adx, k= 1,2. 

Here abk is a positive definite matrix for each k, which may differ from aij. For 
example, if the coefficients aij are variable we may want to choose a,? = a,1(xk), 

where Xk is some point of Ok. In this case the resulting subproblems may be 
efficiently solved. Set A(V, X) = A1(V, x) + A2(V, x) on So X So. Let us now 
consider an arbitrary function V E S2. We decompose V on 22 as follows. Let 
V = VH + Vp, where Vp E Sho(02) and satisfies 

A2(VP, X)-=2(VX, X), VX E (02) 

Notice that Vp is determined on E22 by the values of Von E22 and that 

42(VH, X) = 0, VX E h 
Thus, on Q2 V is decomposed into a function Vp which vanishes on au22 and a 
function VH which satisfies the above homogeneous equations. With a slight abuse of 
terminology we shall refer to such a function VH as "discrete harmonic". We now 
define the bilinear form B(-, -) on So x So by 

B (V, J, =A(V, 0) + A2 (VP, I P). 

We shall show that the corresponding equation 

(10) B(W, X) = (g, X), VX e So 
can be solved by solving related Galerkin equations on 21 and 22. This is done as 
follows: Consider X E S2(02). Then (10) reduces to 

X2(WP, X) = (g, X), VX E= 

Since W, e E S2(02) this is just the solution of a discrete Dirichlet problem on 
With Wp now known, we write (10) as 

(11) .41(W, X) = (g, X) -2(WP, XP) = (g, X) -2(WP, X)- 
The last equality follows since A2(WP, XH) = O. The equations (11) uniquely de- 
termine W E Sh(Ql). In fact, W is the discrete solution of a mixed Neumann- 
Dirichlet problem on Q1. Having now determined W on 21 and, in particular, on F, 
we determine W.H as the discrete harmonic function on 22 with values W on F and 
zero on the rest of a82. This involves solving another discrete Dirichlet problem on 
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The spectral equivalence of the form A(-,-) and B(-,-) (and hence of the 
matrices A and B) will now be demonstrated. We shall show that the condition 
number K is bounded independent of the dimension of S2. In particular, we shall 
prove the following 

THEOREM. Let A(., -), So and B(-, ) be defined as above. Then there are positive 
constants XA and X1 independent of h such that 

X0B(V, V) < A(V, V) < X1B(V, V), vV E So. 
Proof. Because of the uniform positive definiteness of the 2 X 2 matrix { aij } and 

the positive definiteness of the constant matrices {a'k }, k = 1,2, there are positive 
constants ao and a1 such that 

aOJ(v, v) < A (v, v) < ajJ(v, v) 
for all v E Ho(92). Thus, it remains to be shown that there exist positive constants IPo 
and f31 such that 

f30B(V, V) < A(V, V) < f31B(V, V) 
for all V E SO. Clearly, 

B(V, V) < 4(VI V), 
so that Po = 1. Thus, we need to prove that 

J(V, V) < #,8B(V, V), 

which will obviously follow from the inequality 

(12) A2(VH, VH) < YA1(V, V) 

with y independent of h. The inequality (12) is proved as follows: Let VH be the 
restriction to 92 of a function in Ho(g2) which satisfies 

VH = V on I 

and 

A2(VHI) = 0 VP e HOe 

This is the "harmonic" function in Q2 taking the values V on F. To estimate VH, we 
compare it with VH and use known estimates. Clearly, 

42('HI VH) < 2A2(VH v., VH- VH) + 2A2(VH, VH) 

Since VH vanishes on a92/F, we have the a priori estimate (cf. [12], [8]) 

A2(VH, VH) < HI/2(0Q2) 

< CI V 12PHi/2Pr S CI V 12H'/(8 

The last two inequalities follow from the definition of H'/2(F) (cf. [11]) and the fact 
that V vanishes on ag. 

Now from the definition of VH and VH it follows easily that 

X2(VH- vH, VH- vH) < inf A2(X VH, X VH) 

with the infimum taken over functions X E SO with X = VH on r. By well-known 
properties of So we see that for 0 < e < 1/2, 

inf A2(X VH, X VH) < Ch2e|VlHl e(Q ). 
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Now, using a well-known a priori inequality (cf. [12], [8]) and an "inverse property" 
of So (cf. [2]), we see that 

h2|| VH' ||H1?e(92) 1 Ch 2I VH1 |H/2?e(82) l Cl V ) 

Combining the above estimates yields 

J2 (VH I VH) -< C|| ,/(I cf A( V, V), 

the last inequality following by a trace theorem (cf. [12]). This proves (12) which in 
turn completes the proof of the theorem. 

3. Matrix Representation of the Operators. In this section we will describe the 
preconditioner B in terms of block matrices. It will be shown that B has a special 
structure and that the process for solving Ba = b previously described may also be 
seen to be a block Gauss elimination process. 

We shall suppose that we have the usual nodal basis for SI and that the nodes are 
partitioned into three subsets corresponding to those in F, 01 and 02. We shall 
order the corresponding vectors as follows: 

with vo, v1 and v2 corresponding to the nodes on I, 0h and C 2, respectively. In 
terms of block matrices the system corresponding to B is 

Boo Bo1 Bo2 VO) (bo 
B T 11 0 ? v, bj 

(BJ2 B22 V2 b 2 

Now the first step of the solution process described in Section 2 consists of writing 
the equivalent system 

(B - B02B-Jjj Bo,~ v (bo - BB1 Boo-02 2-2 BoT2 02l SoB2B22 

(13) BOT B11 0 v b1 I 
BT2 0 B22)\ b ) 

The second step in the process corresponds to the solution of 

|B0(0) Bo, v1 o |bo - B B-1b2 
B01 ~0 

where the entries of B(1) are given by A1(4i, 4>) with i and j corresponding to nodes 
on F. Consequently, Boo = B(1) + B02 BA2 TBj2. Thus, we see that the B has the form 

(B(g) + B02 BA2 BjTj Bo, B02 

B= BJT B11 0 

B02 0 B22 

and the process is just that of block Gauss elimination. The final step in the process 
corresponds to backsolving (13) for v2, once vo and vl are known. 
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Remark. In the case that the forms A(.,.) and A(., ) coincide, so that the 
subproblems for the original form are solved exactly, the present method coincides 
with that recently studied by Bj0rstad and Widlund [3]. In contrast, the general 
method presented here only assumes the solvability of the subproblems correspond- 
ing to the form A(-, *) which we are free to choose. We emphasize that the purpose 
here is to construct a preconditioner for the original problem which in our case is 
more general. 

4. Applications and Numerical Experiments. In this section we shall present some 
results of numerical experiments which illustrate the convergence of the iterative 
algorithm discussed in Section 2. To this end we shall measure K (the condition 
number of the preconditioned system), the number of iterations required to reduce 
the iteration error in the L2-norm of the residual by some factor e and the average 
reduction per iteration. 

In the two examples considered in this section we shall use subspaces { SI} of 
piecewise linear functions on a rectangular grid of size h. In both examples we shall 
use the algorithm to solve the finite element equations approximating an elliptic 
problem of the form 

-V (a(x, y)Vu) = f in , 
u=g onag, 

where 2 is the "'U" shaped domain given in the following figure. 

<- 1 -> <- 1I -> 

0,4A 1,4 A 

3 3 

V~~~~~~~~ 

1< 4 >1 

Example 1. For our first example we chose 

a (x, y) = 1 + x/2 + y/3. 

The functions f and g were taken to correspond to the solution u = sin x sin y. 
The domain 2 was split into two domains 21 and 02 and the algorithm of Section 2 
was applied where the coefficients of the preconditioning form (9) were taken to be 
piecewise constant in 21 and constant in 02* 

Table 1 gives the average error reduction per iteration and the number of 
iterations necessary to reduce the initial error by a factor of 10-4. The table clearly 
indicates that the error reduction is independent of the mesh parameters as theoreti- 
cally predicted. 
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TABLE 1 

h | Number of Average Reduction |K X Number of 
Iterations per Iteration K 0 Unknowns 

1/4 7 .23 3.6 108 

1/8 7 .22 4.0 532 

1/12 7 .22 4.0 1276 

Example 2. In this example we study the condition number of the preconditioned 
system of equations for a problem with discontinuous coefficients. More precisely, 
we consider solving the above problem with 

1 in 1, 
l in Q2, 

where y is a constant. The functions f and g are chosen so that the solution u is 
given by 

(x + y)(1 _ y)2 + 3yxy + 3(1 - y)x in Q1, 

(x2 + y2)(1 _ y)2 + 3xy in 92. 

Table 2 lists the condition number of the preconditioned system for various values 
of y. The results are given for h = 1/12; almost identical results were obtained for 
h = 1/3 and h = 1/6. Note the improved condition number as y becomes small. 

TABLE 2 

I Y K- A x 0 

1 2 
.5 1.5 
.1 1.1 
.05 1.05 
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